TOPAZ/TOPAZCHM Modeling Codes

Allows modeling a wide range of problems

t LLNL, we have developed a suite of codes that have been used successfully to model a wide range of problems. Chief among these codes are DYNA2D and DYNA3D (explicit finite-element codes), NIKE2D and NIKE3D (implicit finite-element codes), and TOPAZ2D (implicit heat-transport code). The heat-flow code TOPAZ2D has been modified to incorporate arbitrary chemistry of mixed materials with Arrhenius kinetics.

TOPAZCHM for modeling chemical reactions

This new code has all of the thermal capabilities of the original TOPAZ code:

- Several boundary conditions:
 - temperature
 - flux
 - convection
 - radiation
 - enclosure radiation
- Thermal slidelines
- Internal heat generation
- Bulk nodes
- Nonisotropic thermal conductivity. In addition, TOPAZCHM has the capabilities needed to handle chemical reactions:
- Improved time-step control
- · Several mixture models for thermal conductivity and heat capacity
- Gas production
- · Arrhenius kinetics with activation volume and pressure prefactor terms.

TOPAZCHM is successfully modeling several widely different systems. We have developed sev-

eral phenomenological chemical reaction models that can be applied to a range of problems. Models have been constructed to study thermochemical processes such as thermite burns: the time-to-event for a heated. confined explosive; the defla-

Modeling hazards in a fire

APPLICATIONS

· Modeling the response of

· Modeling thermite reactions

Modeling phase transitions in

explosives to fire

Contact gration of nonconfined explosives; and complex phase transi-

tions. This same methodology can be applied to rain flow and curing in injection molding.

Temperature profiles in a cylinder of burning explosive (LX17) 20 minutes after ignition.

PALM2D for modeling simultaneous heat and stress

This code adds to TOPAZ2D all of the capabilities of NIKE2D:

- · Many elastic and inelastic material models
- Several types of slidelines
- Several boundary conditions:
 - pressure
 - shear
 - displacement
- Thermal stress
- Body loads
- Nodal loads.

PALM2D has been used to model problems with simultaneous heat and stress loads. The TOPAZCHM and PALM2D codes can be used together to solve coupled thermal-mechanicalchemical problems.

Availability: We are seeking industrial partners with whom to apply the codes to industry needs.

Albert L. Nichols III Phone: (510) 422-6781 Fax: (510) 422-2382 E-mail: alnichols@llnl.gov

Mail code: L-282